Khi gửi tiết kiệm P (đồng) theo thể thức trả lãi kép định kì với lãi suất mỗi kì là r (r cho dưới dạng số thập phân) thì số tiền A (cả vốn lẫn lãi) nhận được sau t kì gửi là \(A = P{\left( {1 + r} \right)^t}\) (đồng). Thời gian gửi tiết kiệm cần thiết để số tiền ban đầu tăng gấp ba là:
-
A.
\(t = {\log _{1 + r}}3\) năm.
-
B.
\(t = {\log _3}\left( {1 + r} \right)\) năm.
-
C.
\(t = {\log _{1 + r}}2\) năm.
-
D.
\(t = {\log _2}\left( {1 + r} \right)\) năm.
Cho phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\). Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).
Để số tiền ban đầu tăng gấp ba thì \(A = 3P\). Thay \(A = 3P\) vào \(A = P{\left( {1 + r} \right)^t}\) ta có:
\(3P = P{\left( {1 + r} \right)^t} \Leftrightarrow {\left( {1 + r} \right)^t} = 3 \Leftrightarrow t = {\log _{1 + r}}3\) (năm)
Đáp án A.
Đáp án : A