Khi xóa đi chữ số hàng trăm của một số tự nhiên có ba chữ — Không quảng cáo

Khi xóa đi chữ số hàng trăm của một số tự nhiên có ba chữ số thì số đó giảm đi 5 lần Tìm số có ba chữ số đó


Đề bài

Khi xóa đi chữ số hàng trăm của một số tự nhiên có ba chữ số thì số đó giảm đi 5 lần. Tìm số có ba chữ số đó.

Phương pháp giải

- Viết biểu thức theo đề bài

- Áp dụng cách phân tích cấu tạo số để giải bài toán

Gọi số cần tìm là $\overline {abc} $ (a khác 0). Xóa đi chữ số hàng trăm ta được số $\overline {bc} $.

Theo đề bài ta có:

$\overline {abc}  = 5 \times \overline {bc} $

$\overline {a00}  + \overline {bc}  = 5 \times \overline {bc} $

$\overline {a00}  = 5 \times \overline {bc}  - \overline {bc} $

$\overline {a00}  = 4 \times \overline {bc} $

Vì $\overline {bc}  < 100$ nên $4 \times \overline {bc}  < 400$. Suy ra $\overline {a00} $ < 400

Với $\overline {a00} $ = 100 thì $100 = 4 \times \overline {bc} $. Suy ra $\overline {bc}  = 25$. Ta được số 125

Với $\overline {a00} $ = 200 thì $200 = 4 \times \overline {bc} $. Suy ra $\overline {bc}  = 50$. Ta được số 250

Với $\overline {a00} $ = 300 thì $300 = 4 \times \overline {bc} $. Suy ra $\overline {bc}  = 75$. Ta được số 375

Vậy số cần tìm là 125, 250 và 375.