Lý thuyết Căn bậc ba và căn thức bậc ba Toán 9 Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Lý thuyết Căn bậc ba và căn thức bậc ba Toán 9 Kết nối tri thức

1. Căn bậc ba Khái niệm căn bậc ba của một số thực

1. Căn bậc ba

Khái niệm căn bậc ba của một số thực

Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\).

Chú ý:

- Mỗi số a đều có duy nhất một căn bậc ba.

- Căn bậc ba của số a được kí hiệu là \(\sqrt[3]{a}\), trong đó số 3 được gọi là chỉ số của căn.

Nhận xét: Từ định nghĩa căn bậc ba, ta có \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\) với mọi số thực a.

Ví dụ:

\(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\);

\(\sqrt[3]{{ - 27}} = \sqrt[3]{{{{\left( { - 3} \right)}^3}}} =  - 3\).

Tính căn bậc ba của một số bằng máy tính cầm tay

Ta có thể sử dụng loại MTCT thích hợp để tính căn bậc ba của một số.


Cùng chủ đề:

Lý thuyết Bất đẳng thức và tính chất Toán 9 Kết nối tri thức
Lý thuyết Bảng tần số tương đối và biểu đồ tần số tương đối Toán 9 Kết nối tri thức
Lý thuyết Bảng tần số và biểu đồ tần số Toán 9 Kết nối tri thức
Lý thuyết Bảng tần số, tần số tương đối ghép nhóm và biểu đồ Toán 9 Kết nối tri thức
Lý thuyết Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai Toán 9 Kết nối tri thức
Lý thuyết Căn bậc ba và căn thức bậc ba Toán 9 Kết nối tri thức
Lý thuyết Căn bậc hai và căn thức bậc hai Toán 9 Kết nối tri thức
Lý thuyết Cung và dây của một đường tròn Toán 9 Kết nối tri thức
Lý thuyết Giải bài toán bằng cách lập hệ phương trình Toán 9 Kết nối tri thức
Lý thuyết Giải bài toán bằng cách lập phương trình Toán 9 Kết nối tri thức
Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức