Lý thuyết Đại lượng tỉ lệ thuận Toán 7 Kết nối tri thức — Không quảng cáo

Toán 7, giải toán lớp 7 kết nối tri thức với cuộc sống Bài 22. Đại lượng tỉ lệ thuận trang 11 SGK Toán 7 kết n


Lý thuyết Đại lượng tỉ lệ thuận Toán 7 Kết nối tri thức

Định nghĩa đại lượng tỉ lệ thuận

I. Các kiến thức cần nhớ

Định nghĩa đại lượng tỉ lệ thuận

+ Nếu đại lượng $y$  liên hệ với đại lượng $x$  theo công thức \(y = kx\) (với $k$  là hằng số khác $0$ ) thì ta nói $y$  tỉ lệ thuận với $x$  theo hệ số tỉ lệ $k.$

+ Khi đại lượng $y$  tỉ lệ thuận với đại lượng $x$  theo hệ số tỉ lệ $k$  (khác $0$ ) thì $x$ cũng tỉ lệ thuận với $y$  theo hệ số tỉ lệ \(\dfrac{1}{k}\) và ta nói hai đại lượng đó tỉ lệ thuận với nhau.

Ví dụ: Nếu \(y = 3x\) thì  $y$ tỉ lệ thuận với $x$ theo hệ số $3$, hay $x$ tỉ lệ thuận với $y$ theo hệ số \(\dfrac{1}{3}.\)

Tính chất:

* Nếu hai đại lượng tỉ lệ thuận với nhau thì:

+ Tỉ số hai giá trị tương ứng của chúng luôn luôn không đổi.

+ Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.

* Nếu hai đại lượng $y$ và $x$  tỉ lệ thuận với nhau theo tỉ số \(k\) thì: \(y = kx;\)

\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = ... = k\) ; \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_1}}}{{{y_2}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_1}}}{{{y_3}}};...\)

II. Các dạng toán thường gặp

Dạng 1: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ thuận

Phương pháp:

+ Xác định hệ số tỉ lệ \(k.\)

+ Dùng công thức \(y = kx\) để tìm các giá trị tương ứng của \(x\) và \(y.\)

Dạng 2: Xét tương quan tỉ lệ thuận giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng

Phương pháp:

Xét xem tất cả các thương của các giá trị tương ứng của hai đại lượng xem có bằng nhau không?

Nếu bằng nhau thì hai đại lượng tỉ lệ thuận.

Nếu không bằng nhau thì hai đại lượng không tỉ lệ thuận.

Dạng 3: Bài toán về đại lượng tỉ lệ thuận

Phương pháp:

+ Xác định tương quan tỉ lệ thuận giữa hai đại lượng

+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.

Dạng 4: Chia một số thành những phần tỉ lệ thuận với các số cho trước

Phương pháp:

Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)

Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).


Cùng chủ đề:

Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
Lý thuyết Đại lượng tỉ lệ nghịch Toán 7 Kết nối tri thức
Lý thuyết Đại lượng tỉ lệ thuận Toán 7 Kết nối tri thức
Lý thuyết Định lí và chứng minh định lí SGK Toán 7 - Kết nối tri thức
Toán 7, giải toán lớp 7 kết nối tri thức với cuộc sống