Lý thuyết So sánh phân số Toán 6 Chân trời sáng tạo — Không quảng cáo

Toán 6, giải toán lớp 6 chân trời sáng tạo Bài 3. So sánh phân số


Lý thuyết So sánh phân số Toán 6 Chân trời sáng tạo

Tải về

Lý thuyết So sánh phân số Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểu

I. So sánh hai phân số cùng mẫu

Trong hai phân số có cùng một mẫu dương, phân số nào có tử lớn hơn thì lớn hơn.

Ví dụ : So sánh $\dfrac{{ - 4}}{5}$ và $\dfrac{{ - 7}}{5}$.

Ta có: $ - 4 > - 7$ và $5 > 0$ nên $\dfrac{{ - 4}}{5} > \dfrac{{ - 7}}{5}$.

Chú ý : Với hai phân số có cùng một mẫu nguyên âm, ta đưa chúng về hai phân số có cùng mẫu nguyên dương rồi so sánh.

Ví dụ:

So sánh $\dfrac{{ - 4}}{{ - 5}}$ và $\dfrac{2}{{ - 5}}$

Đưa hai phân số trên về có cùng một mẫu nguyên âm: $\dfrac{4}{5}$ và $\dfrac{{ - 2}}{5}$

Ta có: $4 > - 2$ và $5 > 0$ nên $\dfrac{4}{5} > \dfrac{{ - 2}}{5}$.

II. So sánh hai phân số khác mẫu

Bước 1 : Quy đồng mẫu hai phân số đã cho (về cùng một mẫu dương)

Bước 2 : So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn.

Ví dụ : So sánh hai phân số $\dfrac{{ - 7}}{{12}}$ và $\dfrac{{ - 11}}{{18}}$.

$BCNN(12;18) = 36$ nên ta có:

$\dfrac{{ - 7}}{{12}} = \dfrac{{ - 7.3}}{{12.3}} = \dfrac{{ - 21}}{{36}}$

$\dfrac{{ - 11}}{{18}} = \dfrac{{ - 11.2}}{{18.2}} = \dfrac{{ - 22}}{{36}}$.

Vì $ - 21 > - 22$ nên $\dfrac{{ - 21}}{{36}} > \dfrac{{ - 22}}{{36}}$. Do đó $\dfrac{{ - 7}}{{12}} > \dfrac{{ - 11}}{{18}}$.

III. Áp dụng quy tắc so sánh phân số

Phân số có tử và mẫu là hai số nguyên cùng dấu thì lớn hơn $0$ , gọi là phân số dương.

Ví dụ : $\dfrac{{ - 3}}{{ - 5}} > 0$ hoặc $\dfrac{4}{5} > 0$

Phân số có tử và mẫu là hai số nguyên khác dấu thì nhỏ hơn $0$, gọi là phân số âm.

Ví dụ : $\dfrac{{ - 3}}{5} < 0$

- Ta còn có các cách so sánh phân số như sau:

+ Áp dụng tính chất: $\dfrac{a}{b} < \dfrac{c}{d} \Leftrightarrow a.d < b.c{\rm{\;}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}} \in {\rm{Z}};{\rm{b}},{\rm{d\;}} > {\rm{\;0}})$

+ Đưa về hai phân số cùng tử dương rồi so sánh mẫu (chỉ áp dụng đối với hai phân số cùng âm hoặc cùng dương)

Ví dụ : $\dfrac{4}{{ - 9}} > \dfrac{4}{{ - 7}};$$\dfrac{3}{5} < \dfrac{3}{2}$

+ Chọn số thứ ba làm trung gian.

Ví dụ:

$\dfrac{{ - 4}}{9} < 0 < \dfrac{4}{7}{\kern 1pt}$ suy ra $\dfrac{{ - 4}}{9}<\dfrac{4}{7}$

$\dfrac{{14}}{9} > 1 > \dfrac{4}{7}$ suy ra $\dfrac{{14}}{9}>\dfrac{4}{7}$

+ Sử dụng tính chất so sánh: Nếu \(\dfrac{a}{b} < 1\) thì \(\dfrac{a}{b} < \dfrac{{a + m}}{{b + m}}\)

IV. Hỗn số dương

Viết một phân số lớn hơn 1 thành tổng của một số nguyên dương và một phân số nhỏ hơn 1 ( với tử và mẫu dương) rồi viết chúng liền nhau thì được 1 hỗn số dương.

Ví dụ:

\(\frac{7}{4}= \frac{4.1+3}{4}= 1 + \frac{3}{4}=1\frac{3}{4}\)


Cùng chủ đề:

Lý thuyết Phép cộng và phép trừ phân số Toán 6 Chân trời sáng tạo
Lý thuyết Phép cộng, phép trừ hai số nguyên Toán 6 Chân trời sáng tạo
Lý thuyết Phép nhân và phép chia hết hai số nguyên Toán 6 Chân trời sáng tạo
Lý thuyết Phép nhân và phép chia phân số Toán 6 Chân trời sáng tạo
Lý thuyết Phép thử nghiệm - Sự kiện Toán 6 Chân trời sáng tạo
Lý thuyết So sánh phân số Toán 6 Chân trời sáng tạo
Lý thuyết Số nguyên âm và tập hợp các số nguyên Toán 6 Chân trời sáng tạo
Lý thuyết Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo
Lý thuyết Số thập phân Toán 6 Chân trời sáng tạo
Lý thuyết Số đo góc. Các góc đặc biệt Toán 6 Chân trời sáng tạo
Lý thuyết Tập hợp số tự nhiên. Ghi số tự nhiên Toán 6 Chân trời sáng tạo