Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\) chứa điểm nào trong các điểm sau đây?
-
A.
\((0;0)\)
-
B.
\((1;0)\)
-
C.
\((0; - 2)\)
-
D.
\((0;2)\)
Thay lần lượt tọa độ các điểm đã cho vào hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\), nếu thỏa mãn thì điểm đó thuộc miền nghiệm của bất phương trình đã cho.
Với điểm có tọa độ \((0;0)\) ta thấy 2.0 – 5.0 – 1 = -1 không thỏa mãn phương trình \(2x - 5y - 1 > 0\).
Với điểm có tọa độ \((1;0)\) ta thấy 1 + 0 + 1 = 2 không thỏa mãn phương trình \(x + y + 1 < 0\).
Với điểm có tọa độ \((0;2)\) ta thấy 0 + 2 + 1 = 3 không thỏa mãn phương trình \(x + y + 1 < 0\).
Với điểm có tọa độ \((0; - 2)\) ta thấy thỏa mãn mọi phương trình trong hệ.
Vậy miền nghiệm chứa điểm \((0; - 2)\).
Đáp án : C