Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit thức ăn mỗi ngày. Mỗi kg thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kg thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua tối đa 1,6 kg thịt bò và 1,1 kg thịt lợn; giá tiền 1 kg thịt bò là 45 nghìn đồng, 1 kg thịt lợn là 35 nghìn đồng. Hỏi gia đình đó phải bỏ ra ít nhất bao nhiêu tiền (đơn vị: nghìn đồng) để đạt các yêu cầu trên?
Đáp án:
Đáp án:
Lập hệ bất phương trình.
Gọi x, y lần lượt là số kg thịt bò và thịt lợn gia đình đó mua mỗi ngày (\(0 \le x \le 1,6\), \(0 \le y \le 1,1\)).
Số đơn vị protein mỗi ngày là 800x + 600y, số đơn vị lipit mỗi ngày là 200x + 400y.
Vì gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit mỗi ngày nên ta có hệ bất phương trình: \(\left\{ \begin{array}{l}800x + 600y \ge 900\\200x + 400y \ge 400\\0 \le x \le 1,6\\0 \le y \le 1,1\end{array} \right.\) hay \(\left\{ \begin{array}{l}8x + 6y \ge 9\\x + 2y \ge 2\\0 \le x \le 1,6\\0 \le y \le 1,1\end{array} \right.\) (*).
Số tiền cần bỏ ra để mua thịt bò, thịt lợn mỗi ngày là f(x;y) = 45x + 35y (nghìn đồng).
Bài toán trở thành tìm giá trị nhỏ nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*).
Miền nghiệm của hệ bất phương trình (*) là tứ giác ABCD (kể cả biên).
Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (*) khi (x;y) là tọa độ một trong các đỉnh A(1,6;1,1), B(1,6;0,2), C(0,6;0,7), D(0,3;1,1).
Thay tọa độ từng điểm vào f(x;y) thấy hàm số đạt giá trị nhỏ nhất bằng 51,1 khi (x;y) = (0,6;0,7).
Vậy gia đình cần bỏ ra ít nhất 51,1 nghìn đồng để mua thịt bò và thịt lợn mỗi ngày.