Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 |
Số 3 |
Lần 6 |
Số 5 |
Lần 11 |
Số 3 |
Lần 16 |
Số 2 |
Lần 21 |
Số 1 |
Lần 2 |
Số 1 |
Lần 7 |
Số 2 |
Lần 12 |
Số 2 |
Lần 17 |
Số 1 |
Lần 22 |
Số 5 |
Lần 3 |
Số 2 |
Lần 8 |
Số 3 |
Lần 13 |
Số 2 |
Lần 18 |
Số 2 |
Lần 23 |
Số 3 |
Lần 4 |
Số 3 |
Lần 9 |
Số 4 |
Lần 14 |
Số 1 |
Lần 19 |
Số 3 |
Lần 24 |
Số 4 |
Lần 5 |
Số 4 |
Lần 10 |
Số 5 |
Lần 15 |
Số 5 |
Lần 20 |
Số 5 |
Lần 25 |
Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 1
-
A.
0,4
-
B.
0,14
-
C.
0,16
-
D.
0, 25
Đáp án: C
- Đếm số lần có số 1 xuất hiện.
- Xác suất thực nghiệm=Số lần xuất hiện số 1: Tổng số lần rút
Tổng số lần rút là 25 lần.
Số lần xuất hiện số 1 là 4 lần.
Xác suất thực nghiệm xuất hiện số 1 là \(\dfrac{4}{{25}} = 0,16\)
Xuất hiện số 2
-
A.
0,42
-
B.
0,24
-
C.
0,12
-
D.
0,6
Đáp án: B
- Đếm số lần có số 2 xuất hiện.
- Xác suất thực nghiệm=Số lần xuất hiện số 2: Tổng số lần rút
Tổng số lần rút là 25 lần.
Số lần xuất hiện số 2 là 6 lần.
Xác suất thực nghiệm xuất hiện số 2 là \(\dfrac{6}{{25}} = 0,24\)
Xuất hiện số chẵn
-
A.
0,24
-
B.
0,63
-
C.
0,36
-
D.
0,9
Đáp án: C
- Đếm số lần có số chẵn xuất hiện: Số 2 + Số 4
- Xác suất thực nghiệm=Số lần xuất hiện số chẵn: Tổng số lần rút
Tổng số lần rút là 25 lần.
Số lần xuất hiện số 2 là 6 lần.
Số lần xuất hiện số 4 là 3 lần.
Số lần xuất hiện số chẵn là 6+3=9 lần.
Xác suất thực nghiệm xuất hiện số 2 là \(\dfrac{9}{{25}} = 0,36\)