Một sợi dây đàn hồi có sóng dừng. Trên dây những điểm dao động với cùng biên độ \({A_1}\) có vị trí cân bằng liên tiếp cách đều nhau một đoạn \({d_1}\) và những điểm dao động với cùng biên độ \({A_2}\) có vị trí cân bằng liên tiếp cách đều nhau một đoạn \({d_2}\). Biết \({A_1} > {A_2} > 0\). Biểu thức nào sau đây đúng
-
A.
\({d_1} = 0,25{d_2}\)
-
B.
\({d_1} = 0,5{d_2}\)
-
C.
\({d_1} = 4{d_2}\)
-
D.
\({d_1} = 2{d_2}\)
+ Sử dụng biểu thức biên độ sóng dừng: \(A = {A_b}\sin \left( {\frac{{\pi d}}{\lambda }} \right)\)
+ Vận dụng khoảng cách trong sóng dừng
Ta có: Các điểm dao động cùng biên độ và cách đều nhau.
Ta có:
+ Các điểm bụng: \(\left\{ {\begin{array}{*{20}{l}}{A = {A_b}}\\{\Delta d = \frac{\lambda }{2}}\end{array}} \right.\)
+ Các điểm dao động: \(\left\{ {\begin{array}{*{20}{l}}{A = \frac{{{A_b}}}{{\sqrt 2 }}}\\{\Delta d = \frac{\lambda }{4}}\end{array}} \right.\)
Do \({A_2} > {A_1} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{d_2} = \frac{\lambda }{2}}\\{{d_1} = \frac{\lambda }{4}}\end{array}} \right. \Rightarrow {d_2} = 2{d_1}\)
Đáp án B.
Đáp án : B