Đề bài
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
-
A.
12cm ; 24cm.
-
B.
10cm ; 22 cm.
-
C.
10cm ; 24cm.
-
D.
15cm ; 24cm.
Phương pháp giải
Áp dụng định lý Pythagore: Trong một tam giác vuông, bình phương hai cạnh huyền bằng tổng bình phương hai cạnh góc vuông. và tính chất dãy tỉ số bằng nhau.
Gọi độ dài hai cạnh góc vuông là \(x,y\left( {x,y > 0} \right)\)
Theo định lý Pytago ta có: \({x^2} + {y^2} = 26{}^2 \Rightarrow {x^2} + {y^2} = 676\)
Theo đề bài ta có: \(\frac{x}{5} = \frac{y}{{12}} \Rightarrow \frac{{{x^2}}}{{25}} = \frac{{{y^2}}}{{144}} = \frac{{{x^2} + {y^2}}}{{25 + 144}} = \frac{{676}}{{169}} = 4\)
Suy ra \({x^2} = 25.4 \Rightarrow {x^2} = 100 \Rightarrow x = 10cm\)
\({y^2} = 144.4 \Rightarrow {y^2} = 576 \Rightarrow y = 24cm\)
Đáp án : C