Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm. Khi thực hiện, mỗi ngày tổ sản xuất 57 sản phẩm. Do đó, tổ đã hoàn thành trước kế hoạch 1 ngày và còn vượt mức 13 sản phẩm. Hỏi theo kế hoạch, tổ phải sản xuất bao nhiêu sản phẩm?
Bước 1. Lập phương trình.
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và theo các đại lượng đã biết.
- Lập phương trình biểu diễn mối quan hệ giữa các đại lượng.
Bước 2. Giải phương trình.
Bước 3. Trả lời.
- Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thoả mãn điều kiện của ẩn, nghiệm nào không.
- Kết luận.
Gọi số sản phẩm phải sản xuất theo kế hoạch là \({\rm{x}}\) (sản phẩm). Điều kiện: \({\rm{x}} \in {\mathbb{N}^{\rm{*}}},x > 50\).
Số sản phẩm thực tế sản xuất được là: \(x + 13\) (sản phẩm).
Thời gian hoàn thành công việc theo kế hoạch là: \(\frac{x}{{50}}\) (ngày).
Thời gian hoàn thành công việc thực tế là: \(\frac{{x + 13}}{{57}}\) (ngày).
Vì thực tế tổ đã hoàn thành trước kế hoạch 1 ngày nên ta có PT:
\(\begin{array}{l}\frac{x}{{50}} - \frac{{x + 13}}{{57}} = 1\\\frac{{57x - 50\left( {x + 13} \right)}}{{50.57}} = 1\\57x - 50x - 650 = 50.57\\7x = 2850 + 650\\7x = 3500\\x = 500\left( {TM} \right)\end{array}\)
Vậy theo kế hoạch tổ phải sản xuất 500 sản phẩm.