Một vật dao động điều hòa dọc theo trục Ox, quanh điểm gốc O, với biên độ A = 10 cm và chu kì T = 2s. Tại thời điểm t = 0, vật có li độ \(x = 10\)cm. Lấy \({\pi ^2} = 10\).
a) Phương trình dao động của vật là \(x = 10\cos \left( {\pi t} \right)\,cm\)
b) Gia tốc cực đại của vật có độ lớn là \(100\left( {cm/{s^2}} \right)\).
c) Vận tốc của vật tại vị trí có li độ \(x = 5\sqrt 3 \left( {cm} \right)\)là 50 (cm/s)
d) Thời điểm đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ \(x = 5\left( {cm} \right)\)là 3s
a) Phương trình dao động của vật là \(x = 10\cos \left( {\pi t} \right)\,cm\)
b) Gia tốc cực đại của vật có độ lớn là \(100\left( {cm/{s^2}} \right)\).
c) Vận tốc của vật tại vị trí có li độ \(x = 5\sqrt 3 \left( {cm} \right)\)là 50 (cm/s)
d) Thời điểm đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ \(x = 5\left( {cm} \right)\)là 3s
Vận dụng kiến thức về phương trình dao động
a) \(\omega = \frac{{2\pi }}{T} = \pi ,\varphi = 0\). Phương trình dao động của vật là \(x = 10\cos \left( {\pi t} \right)\,cm\). Đúng
b) \({a_{{\rm{max}}}} = 10.{\pi ^2} = 10.10 = 100\,{\rm{cm/}}{{\rm{s}}^2}\). Đúng
c) \(v = \pm \omega \sqrt {{A^2} - {x^2}} = \pi \sqrt {{{10}^2} - {{(5\sqrt 3 )}^2}} = \pi \sqrt {100 - 75} = \pi \sqrt {25} = \pi .5 = 5\pi \) . Đúng
d) \(\cos (\pi t) = \frac{x}{A} = \frac{5}{{10}} = 0,5 \Rightarrow t = \frac{1}{3}s\). Sai