Nghiệm của phương trình sin xcos x = căn 3 /4 là — Không quảng cáo

Nghiệm của phương trình \(\sin x\cos x = \frac{{\sqrt 3 }}{4}\) là


Đề bài

Nghiệm của phương trình \(\sin x\cos x = \frac{{\sqrt 3 }}{4}\) là:

  • A.
    \(\left[ \begin{array}{l}x =  - \frac{\pi }{6} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) .
  • B.
    \(\left[ \begin{array}{l}x =  - \frac{\pi }{6} + k\pi \\x =  - \frac{\pi }{3} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
  • C.
    \(\left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
  • D.
    \(\left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \frac{\pi }{3} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
Phương pháp giải

Sử dụng kiến thức về cách giải phương trình \(\sin x = m\): Xét phương trình \(\sin x = m\)

+ Nếu \(\left| m \right| > 1\) thì phương trình vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì phương trình có nghiệm: \(x = \alpha  + k2\pi ,k \in \mathbb{Z}\) và \(x = \pi  - \alpha  + k2\pi ,k \in \mathbb{Z}\), với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha  = m\)

\(\sin x\cos x = \frac{{\sqrt 3 }}{4} \Leftrightarrow 2\sin x\cos x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin 2x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin 2x = \sin \frac{\pi }{3}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\2x = \pi  - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \frac{\pi }{3} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Đáp án : D