Nghiệm của phương trình x + 1/x - 2 - 1 = 24/x + 3x - 2 — Không quảng cáo

Nghiệm của phương trình \(\frac{{x + 1}}{{x - 2}} - 1 = \frac{{24}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\) là


Đề bài

Nghiệm của phương trình \(\frac{{x + 1}}{{x - 2}} - 1 = \frac{{24}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\) là:

  • A.

    \(x = 2\).

  • B.

    \(x =  - 3\).

  • C.

    \(x = 5\).

  • D.

    \(x =  - 5\).

Phương pháp giải

Tìm ĐKXĐ của phương trình.

Giải phương trình chứa ẩn ở mẫu.

ĐKXĐ: \(x - 2 \ne 0\) và \(x + 3 \ne 0\) hay \(x \ne 2\) và \(x \ne  - 3\)

Ta có: \(\frac{{x + 1}}{{x - 2}} - 1 = \frac{{24}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\)

\(\begin{array}{l}\frac{{\left( {x + 1} \right)\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} - \frac{{\left( {x + 3} \right)\left( {x - 2} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{24}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\\\left( {x + 1} \right)\left( {x + 3} \right) - \left( {x + 3} \right)\left( {x - 2} \right) = 24\\{x^2} + 4x + 3 - {x^2} - x + 6 = 24\\{x^2} + 4x - {x^2} - x = 24 - 6 - 3\\3x = 15\\x = 5\left( {TM} \right)\end{array}\)

Đáp án C.

Đáp án : C