Nghiệm của phương trình \(\frac{{x + 2}}{{x - 4}} - 1 = \frac{{30}}{{\left( {x + 3} \right)\left( {x - 4} \right)}}\) là:
-
A.
\(x = 2\).
-
B.
\(x = - 3\).
-
C.
\(x = 4\).
-
D.
\(x = - 2\).
Tìm điều kiện xác định của phương trình.
Dựa vào cách giải phương trình chứa ẩn ở mẫu.
ĐKXĐ: \(x - 4 \ne 0\) và \(x + 3 \ne 0\) hay \(x \ne 4\) và \(x \ne - 3\).
Ta có: \(\frac{{x + 2}}{{x - 4}} - 1 = \frac{{30}}{{\left( {x + 3} \right)\left( {x - 4} \right)}}\)
\(\frac{{\left( {x + 2} \right)\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 4} \right)}} - \frac{{\left( {x + 3} \right)\left( {x - 4} \right)}}{{\left( {x + 3} \right)\left( {x - 4} \right)}} = \frac{{30}}{{\left( {x + 3} \right)\left( {x - 4} \right)}}\)
\(\left( {x + 2} \right)\left( {x + 3} \right) - \left( {x + 3} \right)\left( {x - 4} \right) = 30\)
\(\begin{array}{l}{x^2} + 5x + 6 - \left( {{x^2} - x - 12} \right) = 30\\{x^2} + 5x + 6 - {x^2} + x + 12 = 30\\\left( {{x^2} - {x^2}} \right) + \left( {5x + x} \right) = 30 - 12 - 6\\6x = 12\\x = 2\left( {TM} \right)\end{array}\)
Đáp án A.
Đáp án : A