Đề bài
Phân tích đa thức sau thành nhân tử \({x^{4\;}} + {x^3}y - x{y^{3\;}} - {y^4}\)
-
A.
\(\left( {{x^2} + {y^2}} \right)\left( {{x^2} + xy + {y^2}} \right)\).
-
B.
\(\left( {x - y} \right)\left( {{x^3} + {y^3}} \right)\).
-
C.
\(\left( {x + y} \right)\left( {{x^3} + {y^3}} \right)\).
-
D.
\(\left( {x + y} \right)\left( {{x^3} - {y^3}} \right)\).
Phương pháp giải
Sử dụng hằng đẳng thức: \({A^2} - {B^2} = (A + B)(A - B)\);\({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\) để phân tích đa thức.
Theo đề ra ta có:
\(\begin{array}{*{20}{l}}{{x^{4\;}} + {x^3}y - x{y^{3\;}} - {y^4}}\\{ = {x^{4\;}} - {y^{4\;}} + {x^3}y - x{y^3}}\\{ = \left( {{x^{2\;}} - {y^2}} \right)\left( {{x^{2\;}} + {y^2}} \right) + xy\left( {{x^{2\;}} - {y^2}} \right)}\\{ = \left( {{x^{2\;}} - {y^2}} \right)\left( {{x^{2\;}} + {y^{2\;}} + xy} \right)}\\{ = \left( {x + y} \right)\left( {x - y} \right)\left( {{x^{2\;}} + xy + {y^2}} \right)}\\{ = \left( {x + y} \right)\left( {{x^{3\;}} - {y^3}} \right)}\end{array}\)
Đáp án : D