Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:
-
A.
\(\frac{{ - 2}}{{x - 3}}\)
-
B.
\(\frac{{2x}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)
-
C.
\(\frac{2}{{x + 3}}\)
-
D.
\(\frac{2}{{x - 3}}\)
Thay phép trừ bằng phép cộng với phân thức đối.
Muốn cộng các phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}} = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{2}{{x + 3}} + \frac{{ - 3}}{{x - 3}}\\ = \frac{{3x + 21}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{2\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{ - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{3x + 21 + 2\left( {x - 3} \right) - 3\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{3x + 21 + 2x - 6 - 3x - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{2x + 6}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{2}{{x - 3}}\end{array}\)
Đáp án : D