Phương trình x + 1/3 + 32x + 1/4 = 2x + 3x + 1/6 + 7 + — Không quảng cáo

Phương trình \(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\) có bao nhiêu nghiệm


Đề bài

Phương trình \(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\) có bao nhiêu nghiệm?

  • A.
    1 nghiệm
  • B.
    2 nghiệm
  • C.
    Không có nghiệm nào
  • D.
    Có vô số nghiệm
Phương pháp giải
Sử dụng cách giải phương trình đưa về dạng \(ax + b = 0\).

\(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\)

\(\frac{{4\left( {x + 1} \right)}}{{12}} + \frac{{9\left( {2x + 1} \right)}}{{12}} = \frac{{2\left( {5x + 3} \right)}}{{12}} + \frac{{7 + 12x}}{{12}}\)

\(4x + 4 + 18x + 9 = 10x + 6 + 7 + 12x\)

\(22x + 13 = 22x + 13\)

\(0 = 0\) (luôn đúng)

Vậy phương trình đã cho có vô số nghiệm

Đáp án : D