Quy đồng mẫu thức các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được:
-
A.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
-
B.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3y}}{{xyz}}\)
-
C.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2z}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
-
D.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{3}{{xyz}}\)
Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm các mẫu thức chung;
- Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó;
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Mẫu chung của các phân thức là \(xyz\)
Nhân tử phụ của \(\frac{1}{x}\) là \(yz\)\( \Rightarrow \frac{1}{x} = \frac{{yz}}{{xyz}}\)
Nhân tử phụ của \(\frac{2}{y}\) là \(x{\rm{z}}\)\( \Rightarrow \frac{2}{y} = \frac{{2{\rm{xz}}}}{{xyz}}\)
Nhân tử phụ của \(\frac{3}{z}\) là \(xy\)\( \Rightarrow \frac{3}{z} = \frac{{3{\rm{x}}y}}{{xyz}}\)
Vậy quy đồng mẫu số các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được \(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
Đáp án : A