Quy đồng mẫu thức các phân thức 1/x^3 + 1,,2/3x + — Không quảng cáo

Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là


Đề bài

Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là:

  • A.
    \(\frac{1}{{{x^3} + 1}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} + x}}{{2\left( {{x^3} + 1} \right)}}\)
  • B.
    \(\frac{1}{{6\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
  • C.
    \(\frac{6}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
  • D.
    \(\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{6}{{6\left( {{x^3} + 1} \right)}}\)
Phương pháp giải

Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm các mẫu thức chung;

- Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó;

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Ta có: \({x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - x + 1} \right);\,3x + 3 = 3\left( {x + 1} \right);\,2{x^2} - 2x + 2 = 2\left( {{x^2} - x + 1} \right)\) và \(BCNN\left( {2;3} \right) = 6\) nên mẫu thức chung của các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) là \(6\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = 6\left( {{x^3} + 1} \right)\).

Nhân tử phụ của \(\frac{1}{{{x^3} + 1}}\) là \(6\). \( \Rightarrow \frac{1}{{{x^3} + 1}} = \frac{6}{{6\left( {{x^3} + 1} \right)}}\)

Nhân tử phụ của \(\frac{2}{{3x + 3}}\) là \(2\left( {{x^2} - x + 1} \right)\). \( \Rightarrow \frac{2}{{3x + 3}} = \frac{{2.2\left( {{x^2} - x + 1} \right)}}{{3\left( {x + 1} \right)2\left( {{x^2} - x + 1} \right)}} = \frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}}\)

Nhân tử phụ của \(\frac{x}{{2{x^2} - 2x + 2}}\) là \(3\left( {x + 1} \right)\). \( \Rightarrow \frac{x}{{2{x^2} - 2x + 2}} = \frac{{x.3\left( {x + 1} \right)}}{{2\left( {{x^2} - x + 1} \right)3\left( {x + 1} \right)}} = \frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)

Đáp án : C