Rút gọn biểu thức 3x - 52x + 11 - 2x + 33x + 7. Khẳng định — Không quảng cáo

Rút gọn biểu thức \(\left( {3x - 5} \right)\left( {2x + 11} \right) - \left( {2x + 3} \right)\left( {3x + 7} \right)\) Khẳng định nào sau đây là đúng


Đề bài

Rút gọn biểu thức \(\left( {3x - 5} \right)\left( {2x + 11} \right) - \left( {2x + 3} \right)\left( {3x + 7} \right)\). Khẳng định nào sau đây là đúng?

  • A.
    \(6{x^2} - 15x + 55\).
  • B.
    Không phụ thuộc vào giá trị của biến \(x\).
  • C.
    \( - 43x - 55\).
  • D.
    76.
Phương pháp giải
Rút gọn biểu thức theo quy tắc nhân đa thức với đa thức rồi kết luận.

\(\left( {3x - 5} \right)\left( {2x + 11} \right) - \left( {2x + 3} \right)\left( {3x + 7} \right)\)

\( = \left( {6{x^2} + 23x - 55} \right) - \left( {6{x^2} + 23x + 21} \right)\)

\( = 6{x^2} + 23x - 55 - 6{x^2} - 23x - 21 =  - 76\)

Vậy giá trị biểu thức không phụ thuộc vào giá trị của biến \(x\).

Đáp án : B