Đề bài
Rút gọn biểu thức \(\frac{{{x^{\frac{4}{3}}}y + x{y^{\frac{4}{3}}}}}{{\sqrt[3]{x} + \sqrt[3]{y}}}\) (với \(x,y > 0\)) được kết quả là:
-
A.
y.
-
B.
x.
-
C.
\(x{y^{\frac{1}{3}}}\).
-
D.
xy.
Phương pháp giải
Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\)
\(\frac{{{x^{\frac{4}{3}}}y + x{y^{\frac{4}{3}}}}}{{\sqrt[3]{x} + \sqrt[3]{y}}} = \frac{{xy\left( {{x^{\frac{1}{3}}} + {y^{\frac{1}{3}}}} \right)}}{{{x^{\frac{1}{3}}} + {y^{\frac{1}{3}}}}} = xy\)
Đáp án D.
Đáp án : D