Rút gọn các biểu thức: A x + 1^2 - X + 3x - 3 - 10 b x + — Không quảng cáo

Rút gọn các biểu thức a) \({(x + 1)^2} - \left( {x + 3} \right)\left( {x - 3} \right) - 10\) b) \(\left( {x + 5} \right)\left( {{x^2} - 5x


Đề bài

Rút gọn các biểu thức:

a) \({(x + 1)^2} - \left( {x + 3} \right)\left( {x - 3} \right) - 10\)

b) \(\left( {x + 5} \right)\left( {{x^2} - 5x + 25} \right) - x{\left( {x - 4} \right)^2} + 16x\)

c) \({\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\)

Phương pháp giải

Sử dụng các hằng đẳng thức đáng nhớ.

a) \({(x + 1)^2} - \left( {x + 3} \right)\left( {x - 3} \right) - 10\)

\(\begin{array}{l} = {\left( {x + 1} \right)^2} - \left( {{x^2} - {3^2}} \right) - 10\\ = {x^2} + 2x + 1 - {x^2} + 9 - 10\\ = \left( {{x^2} - {x^2}} \right) + 2x + \left( {1 + 9 - 10} \right)\\ = 2x\end{array}\)

b) \(\left( {x + 5} \right)\left( {{x^2} - 5x + 25} \right) - x{\left( {x - 4} \right)^2} + 16x\)

\(\begin{array}{l} = {x^3} + {5^3} - x\left( {{x^2} - 8x + 16} \right) + 16x\\ = {x^3} + 125 - {x^3} + 8{x^2} - 16x + 16x\\ = 8{x^2} + 125\end{array}\)

c) \({\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\)

\(\begin{array}{l} = {\left( {x - 2y} \right)^3} - \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + 6{x^2}y\\ = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} - \left( {{x^3} + 8{y^3}} \right) + 6{x^2}y\\ = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} - {x^3} - 8{y^3} + 6{x^2}y\\ = \left( {{x^3} - {x^3}} \right) + \left( { - 6{x^2}y + 6{x^2}y} \right) + 12x{y^2} + \left( { - 8{y^3} - 8{y^3}} \right)\\ = 12x{y^2} - 16{y^3}\end{array}\)