Đề bài
Số đo góc B trong hình vẽ sau là
-
A.
\(30^\circ \).
-
B.
\(50^\circ \).
-
C.
\(60^\circ \).
-
D.
\(40^\circ \).
Phương pháp giải
Tổng ba góc trong một tam giác bằng 180 0 . Tam giác đều có các góc bằng nhau và bằng 60 0 .
Xét tam giác CDE có CD = DE = EC nên tam giác CDE đều. Do đó \(\widehat {CDE} = \widehat {DEC} = \widehat {DCE} = {60^0}\).
Góc DEB là góc ngoài đỉnh E của tam giác CDE nên \(\widehat {DEC} + \widehat {DEB} = {180^0}\) (hai góc kề bù). Suy ra \(\widehat {DEB} = {180^0} - {60^0} = {120^0}\).
Tam giác DEB cân tại E (vì DE = EB).
Xét tam giác DEB cân tại E có \(\widehat {DEB} = {120^0}\) nên \(\widehat {BDE} = \widehat B = \frac{{{{180}^0} - {{120}^0}}}{2} = {30^0}\).
Đáp án : A