Tam giác ABH vuông tại H có AB = 20cm,BH = 12cm. Trên tia — Không quảng cáo

Tam giác ABH vuông tại H có \(AB = 20cm,BH = 12cm \) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH \) Khi đó,


Đề bài

Tam giác ABH vuông tại H có \(AB = 20cm,BH = 12cm.\) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH.\) Khi đó, số đo góc BAC bằng:

  • A.
    80\(^0\)
  • B.
    90\(^0\)
  • C.
    95\(^0\)
  • D.
    85\(^0\)
Phương pháp giải
Sử dụng kiến thức trường hợp đồng dạng thứ nhất của tam giác vuông: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác kia thì hai tam giác vuông đó đồng dạng với nhau.

Ta có: \(\frac{{AB}}{{BH}} = \frac{{20}}{{12}} = \frac{5}{3};AC = \frac{5}{3}AH \Rightarrow \frac{{AC}}{{AH}} = \frac{5}{3} \Rightarrow \frac{{AB}}{{BH}} = \frac{{AC}}{{AH}} \Rightarrow \frac{{AB}}{{AC}} = \frac{{BH}}{{AH}}\)

Tam giác ABH và tam giác CAH có: \(\widehat {AHB} = \widehat {AHC} = {90^0},\frac{{AB}}{{AC}} = \frac{{BH}}{{AH}}\)

Do đó, \(\Delta ABH \backsim \Delta CAH\)

Suy ra: \(\widehat {CAH} = \widehat {ABH}\)

Mà \(\widehat {BAH} + \widehat {ABH} = {90^0}\) nên \(\widehat {BAH} + \widehat {CAH} = {90^0}\) hay \(\widehat {BAC} = {90^0}\)

Đáp án : B