Tam giác ABH vuông tại H có \(AB = 20cm,BH = 12cm.\) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH.\) Khi đó, số đo góc BAC bằng:
-
A.
80\(^0\)
-
B.
90\(^0\)
-
C.
95\(^0\)
-
D.
85\(^0\)
Ta có: \(\frac{{AB}}{{BH}} = \frac{{20}}{{12}} = \frac{5}{3};AC = \frac{5}{3}AH \Rightarrow \frac{{AC}}{{AH}} = \frac{5}{3} \Rightarrow \frac{{AB}}{{BH}} = \frac{{AC}}{{AH}} \Rightarrow \frac{{AB}}{{AC}} = \frac{{BH}}{{AH}}\)
Tam giác ABH và tam giác CAH có: \(\widehat {AHB} = \widehat {AHC} = {90^0},\frac{{AB}}{{AC}} = \frac{{BH}}{{AH}}\)
Do đó, \(\Delta ABH \backsim \Delta CAH\)
Suy ra: \(\widehat {CAH} = \widehat {ABH}\)
Mà \(\widehat {BAH} + \widehat {ABH} = {90^0}\) nên \(\widehat {BAH} + \widehat {CAH} = {90^0}\) hay \(\widehat {BAC} = {90^0}\)
Đáp án : B