Đề bài
Tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là:
-
A.
\(D = \left( { - 2;2} \right)\).
-
B.
\(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\).
-
C.
\(D = \left[ { - 2;2} \right]\).
-
D.
\(D = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\).
Phương pháp giải
Hàm số \(y = \sqrt {u\left( x \right)} \) xác định khi \(u\left( x \right) \ge 0\).
Hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) xác định khi \({x^2} - 4 \ge 0 \Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le - 2\end{array} \right.\)
Vậy tập xác định của hàm số \(y = {8^{\sqrt {{x^2} - 4} }}\) là: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\)
Đáp án B.
Đáp án : B