Theo ước tính, kể từ lúc mới mua, cứ sau mỗi 200 lần sạc — Không quảng cáo

Theo ước tính, kể từ lúc mới mua, cứ sau mỗi 200 lần sạc thì pin của điện thoại X sẽ giảm 4% so với chu kỳ 200 lần sạc


Đề bài

Theo ước tính, kể từ lúc mới mua, cứ sau mỗi 200 lần sạc thì pin của điện thoại X sẽ giảm 4% so với chu kỳ 200 lần sạc trước đó. Hỏi sau 1 200 lần sạc thì pin của điện thoại X còn lại bao nhiêu phần trăm so với lúc mới mua? (làm tròn đến chữ số thập phân thứ hai)

  • A.
    78,28% .
  • B.
    78,27% .
  • C.
    81,54% .
  • D.
    81,53% .
Phương pháp giải

Sử dụng kiến thức về công thức số hạng tổng quát của cấp số nhân: Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định theo công thức: \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\).

200 lần sạc tạo thành 1 chu kì, 1200 lần sạc tạo thành 6 chu kì.

Pin điện thoại ban đầu là 100%, sau 1 chu kì còn 96% = 0,96.

Sau chu kì thứ 2, pin chỉ còn 96% so với sau chu kì 1, tức 0,96.0,96 = 0,9216.

Như vậy, pin điện thoại sau mỗi chu kì sạc sẽ tạo thành một cấp số nhân có công bội \(q = 0,96\) và số hạng đầu \({u_1} = 100\% \).

Mức pin điện thoại ban đầu là \({u_1} = 100\% \).

Mức pin điện thoại sau 1 chu kì là \({u_2}\).

Mức pin điện thoại sau 2 chu kì là \({u_3}\).

Mức pin điện thoại sau 6 chu kì là \({u_7}\).

Dung lượng pin của điện thoại còn lại sau 1200 lần sạc so với lúc mới mua là: \({u_7} = {u_1}.{q^6} = 100\% .{\left( {0,96} \right)^6} \approx 78,28\% \).

Đáp án : A