Thu gọn biểu thức:
a) \(\left( {30{x^4}{y^3} - 25{x^2}{y^3} - 3{x^4}{y^4}} \right):5{x^2}{y^3};\)
b) \({x^3}{y^4}\left( {{x^2} - 2{y^3}} \right) - 2{x^3}{y^3}\left( {{x^4} - {y^4}} \right).\)
a) Sử dụng quy tắc chia đa thức cho đơn thức: Muốn chia đa thức A cho đơn thức B (trường hợp chia hết), ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau.
b) Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
a) \(\left( {30{x^4}{y^3} - 25{x^2}{y^3} - 3{x^4}{y^4}} \right):5{x^2}{y^3}\)
\( = 30{x^4}{y^3}:5{x^2}{y^3} - 25{x^2}{y^3}:5{x^2}{y^3} - 3{x^4}{y^4}:5{x^2}{y^3}\)
\( = 6{x^2} - 5 - \frac{3}{5}{x^2}y.\)
b) \({x^3}{y^4}\left( {{x^2} - 2{y^3}} \right) - 2{x^3}{y^3}\left( {{x^4} - {y^4}} \right)\)
\( = {x^3}{y^4} \cdot {x^2} - {x^3}{y^4} \cdot 2{y^3} - 2{x^3}{y^3} \cdot {x^4} + 2{x^3}{y^3} \cdot {y^4}\)
\( = {x^5}{y^4} - 2{x^3}{y^7} - 2{x^7}{y^3} + 2{x^3}{y^7}\)
\( = {x^5}{y^4} - 2{x^7}{y^3}.\)