Thu gọn biểu thức: A - 9x^2y^3 + 6x^3y^2 - 4xy^2: 3xy^2; b — Không quảng cáo

Thu gọn biểu thức a) \(\left( { - 9{x^2}{y^3} + 6{x^3}{y^2} - 4x{y^2}} \right) 3x{y^2} \) b) \(\frac{1}{2}xy\left( {{x^5} - {y^3}} \right) - {x^2}y\left( {\frac{1}{4}{x^4} - {y^3}} \right) \)


Đề bài

Thu gọn biểu thức:

a) \(\left( { - 9{x^2}{y^3} + 6{x^3}{y^2} - 4x{y^2}} \right):3x{y^2};\)

b) \(\frac{1}{2}xy\left( {{x^5} - {y^3}} \right) - {x^2}y\left( {\frac{1}{4}{x^4} - {y^3}} \right).\)

Phương pháp giải

a) Sử dụng quy tắc chia đa thức cho đơn thức: Muốn chia đa thức A cho đơn thức B (trường hợp chia hết), ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau.

b) Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.

a) \(\left( { - 9{x^2}{y^3} + 6{x^3}{y^2} - 4x{y^2}} \right):3x{y^2}\)

\( =  - 9{x^2}{y^3}:3x{y^2} + 6{x^3}{y^2}:3x{y^2} - 4x{y^2}:3x{y^2}\)

\( =  - 3xy + 2{x^2} - \frac{4}{3}.\)

b) \(\frac{1}{2}xy\left( {{x^5} - {y^3}} \right) - {x^2}y\left( {\frac{1}{4}{x^4} - {y^3}} \right)\)

\( = \frac{1}{2}xy \cdot {x^5} + \frac{1}{2}xy \cdot \left( { - {y^3}} \right) - {x^2}y \cdot \frac{1}{4}{x^4} - {x^2}y \cdot \left( { - {y^3}} \right)\)

\( = \frac{1}{2}{x^6}y - \frac{1}{2}x{y^4} - \frac{1}{4}{x^6}y + {x^2}{y^4}\)

\( = \left( {\frac{1}{2}{x^6}y - \frac{1}{4}{x^6}y} \right) - \frac{1}{2}x{y^4} + {x^2}{y^4}\)

\( = \frac{1}{4}{x^6}y - \frac{1}{2}x{y^4} + {x^2}{y^4}\).