Đề bài
Thực hiện phép chia: \(\left( {{x^5} + {x^3} + {x^2} + 1} \right):\left( {{x^3} + 1} \right)\)
-
A.
\({x^2} + 1\).
-
B.
\({(x + 1)^2}\).
-
C.
\({x^2} - 1\).
-
D.
\({x^2} + x + 1\).
Phương pháp giải
Phân tích đa thức \({x^5} + {x^3} + {x^2} + 1\) thành nhân tử rồi sau đó thực hiện phép chia.
Vì
\(\begin{array}{*{20}{l}}{{x^5} + {x^3} + {x^2}\; + 1}\\{ = {x^3}\left( {{x^2}\; + 1} \right) + {x^2}\; + 1}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right)}\end{array}\)
nên
\(\begin{array}{*{20}{l}}{\left( {{x^5}\; + {x^3}\; + {x^2}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)\left( {{x^3}\; + 1} \right):\left( {{x^3}\; + 1} \right)}\\{ = \left( {{x^2}\; + 1} \right)}\end{array}\)
Đáp án : A