Thực hiện phép tính (tính nhanh nếu có thể)
a) \(146 + 121 + 54 + 379\)
b) \({2^3}.17-{2^3}.14\)
c) \({5^{19}}:{5^{17}} + {3.3^3}-{7^0}\)
d) \(50-\left[ {\left( {20-{2^3}} \right):2} \right]\)
Sử dụng tính chất của phép tính với số tự nhiên.
Nếu phép tính có cả cộng, trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép nâng lên lũy thừa trước, rồi đến nhân chia, cuối cùng đến cộng trừ.
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự: \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
a) \(146 + 121 + 54 + 379\)
\(\begin{array}{l} = \left( {146 + 54} \right) + \left( {121\; + 379} \right)\\ = 200 + 500\\ = 700\end{array}\)
b) \({2^3}.17-{2^3}.14\)
\(\begin{array}{l} = {2^3}.\left( {17 - 14} \right)\\ = 8.3\\ = 24\end{array}\)
c) \({5^{19}}:{5^{17}} + {3.3^3}-{7^0}\)
\(\begin{array}{*{20}{l}}{ = {5^2} + {3^4}-1}\\\begin{array}{l} = \;25 + 81 - 1\\ = 105\end{array}\end{array}\)
d) \(50-\left[ {\left( {20-{2^3}} \right):2} \right]\)
\(\begin{array}{l} = 50-\left( {12:2} \right)\\ = 44\end{array}\)