Đề bài
Tìm \(A\) biết \(A:\frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^3} - 1}}{{{x^2} - 1}}\)
-
A.
\({x^2} + x + 1\)
-
B.
1
-
C.
\(x + 1\)
-
D.
\(x - 1\)
Phương pháp giải
Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau.
\(A:\frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^3} - 1}}{{{x^2} - 1}}\)
\(A = \frac{{{x^3} - 1}}{{{x^2} - 1}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}} = 1\)
Đáp án : B