Tìm a để ax^4y^4/ - 4xy^2 = x^3y^3/4y — Không quảng cáo

Tìm \(a\) để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\)


Đề bài

Tìm \(a\) để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\):

  • A.
    \(a =  - 2x\)
  • B.
    \(a =  - x\)
  • C.
    \(a =  - y\)
  • D.
    \(a =  - 1\)
Phương pháp giải

Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Ta có: \(a{x^4}{y^4}.4y = 4a{x^4}{y^5}\) và \( - 4x{y^2}.{x^3}{y^3} =  - 4{x^4}{y^5}\)

Để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\)thì \(4a{x^4}{y^5} =  - 4{x^4}{y^5}\).

Do đó \(4a =  - 4\) nên \(a =  - 1\)

Đáp án : D