Tìm các giá trị của n để phân số M = n - 5/n - 2 n thuộc — Không quảng cáo

Tìm các giá trị của \(n\) để phân số \(M = \frac{{n - 5}}{{n - 2}}\) (n\( \in \mathbb{Z}\) n\( \ne \)2) tối giản


Đề bài

Tìm các giá trị của \(n\) để phân số \(M = \frac{{n - 5}}{{n - 2}}\) (n\( \in \mathbb{Z}\); n\( \ne \)2) tối giản.

Phương pháp giải

Để \(M\) là phân số tối giản thì ƯCLN của \(n - 5\) và \(n - 2\) là 1.

Gọi d là ƯCLN của \(n - 5\) và \(n - 2\).

Khi đó \(\left( {n - 5} \right) \vdots d\)và \(\left( {n - 2} \right) \vdots d\).

Suy ra\(\left[ {n - 5 - \left( {n - 2} \right)} \right] \vdots d\) suy ra \( - 3 \vdots d\).

Mà d = 1 hoặc d = -1  nên M là phân số tối giản thì \(n - 5\) và \(n - 2\) không chia hết cho 3.

Do đó \(n \ne 3k + 5\)và \(n \ne 3k + 2\)

Hay \(n \ne 3k + 2\)\(\left( {k \in \mathbb{Z}} \right)\).