Tìm điều kiện của m để phương trình 3mx + m - 4x = 3m^2 + 1 — Không quảng cáo

Tìm điều kiện của m để phương trình \(3mx + m - 4x = 3{m^2} + 1\) có nghiệm duy nhất


Đề bài

Tìm điều kiện của m để phương trình \(3mx + m - 4x = 3{m^2} + 1\) có nghiệm duy nhất

  • A.
    \(m \ne \frac{4}{3}\)
  • B.
    \(m = \frac{4}{3}\)
  • C.
    \(m = \frac{3}{4}\)
  • D.
    \(m \ne \frac{3}{4}\)
Phương pháp giải

+ Sử dụng cách giải phương trình đưa về dạng \(ax + b = 0\).

+ Sử dụng khái niệm phương trình bậc nhất một ẩn: Phương trình dạng \(ax + b = 0\), với a, b là hai số đã cho và \(a \ne 0\) được gọi là phương trình bậc nhất một ẩn x.

\(3mx + m - 4x = 3{m^2} + 1\)

\(\left( {3m - 4} \right)x + m - 3{m^2} - 1 = 0\)

Để phương trình \(\left( {3m - 4} \right)x + m - 3{m^2} - 1 = 0\) có nghiệm duy nhất thì \(3m - 4 \ne 0\)

\(3m \ne 4\)

\(m \ne \frac{4}{3}\)

Vậy \(m \ne \frac{4}{3}\)

Đáp án : A