Đề bài
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Phương pháp giải
Rút gọn đa thức Q rồi cho đa thức Q = 0 từ đó tìm các giá trị của x.
Ta có:
\(\begin{array}{l}Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\\Q = 8{{{x}}^{n + 2}} + 8{{{x}}^n} = 8{{{x}}^n}\left( {{x^2} + 1} \right)\end{array}\)
Vì \({x^2} + 1 > 0\) với mọi x nên \(Q = 0 \) khi \(8{{{x}}^n}\left( {{x^2} + 1} \right) = 0 \) hay \(x = 0\)
Vậy x = 0 thì Q = 0
Đáp án : A