Tìm giá trị lớn nhất của biểu thức A = 27 - X^3/5x + 5: 2x — Không quảng cáo

Tìm giá trị lớn nhất của biểu thức \(A = \frac{{27 - {x^3}}}{{5x + 5}} \frac{{2x - 6}}{{3x + 3}}\)


Đề bài

Tìm giá trị lớn nhất của biểu thức \(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}}\).

  • A.
    \(\frac{{27}}{4}\)
  • B.
    \( - \frac{{27}}{4}\)
  • C.
    \( - \frac{{81}}{{40}}\)
  • D.
    \(\frac{{81}}{{40}}\)
Phương pháp giải

Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

\(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}} = \frac{{\left( {3 - x} \right)\left( {{x^2} + 3x + 9} \right)}}{{5\left( {x + 1} \right)}}  :\frac{{2\left( {x - 3} \right)}}{{3\left( {x + 1} \right)}}\)

\( = \frac{{\left( {3 - x} \right)\left( {{x^2} + 3x + 9} \right)}}{{5\left( {x + 1} \right)}} \cdot \frac{{3\left( {x + 1} \right)}}{{2\left( {x - 3} \right)}} =  - \frac{{3\left( {{x^2} + 3x + 9} \right)}}{{10}}\)

\( =  - \frac{3}{{10}}\left[ {\left( {{x^2} + 3x + \frac{9}{4}} \right) + \frac{{27}}{4}} \right] =  - \frac{3}{{10}}\left[ {{{\left( {x + \frac{3}{2}} \right)}^2} + \frac{{27}}{4}} \right]\)

Ta có \({\left( {x + \frac{3}{2}} \right)^2} \ge 0\forall x \Rightarrow {\left( {x + \frac{3}{2}} \right)^2} + \frac{{27}}{4} \ge \frac{{27}}{4}\forall x\)

\( \Rightarrow \left( { - \frac{3}{{10}}} \right)\left[ {{{\left( {x + \frac{3}{2}} \right)}^2} + \frac{{27}}{4}} \right] \le \left( { - \frac{3}{{10}}} \right)\frac{{27}}{4} =  - \frac{{81}}{{40}}\) hay \(A \le  - \frac{{81}}{{40}}\)

Dấu “=” xảy ra \( \Leftrightarrow {\left( {x + \frac{3}{2}} \right)^2} = 0 \Leftrightarrow x + \frac{3}{2} = 0 \Leftrightarrow x =  - \frac{3}{2}\)

Vậy giá trị lớn nhất của biểu thức \(A = \frac{{27 - {x^3}}}{{5x + 5}}:\frac{{2x - 6}}{{3x + 3}}\) là \( - \frac{{81}}{{40}}\) khi \(x =  - \frac{3}{2}\).

Đáp án : C