Tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\)
-
A.
5
-
B.
\(\frac{1}{5}\)
-
C.
9
-
D.
1
Để tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\) cần tìm giá trị nhỏ nhất của phân thức \({x^2} - 6x + 10\).
Ta có: \({x^2} - 6x + 10 = {x^2} - 6x + 9 + 1 = {\left( {x - 3} \right)^2} + 1\)
Vì \({\left( {x - 3} \right)^2} \ge 0\forall x\) nên \({\left( {x - 3} \right)^2} + 1 \ge 1\forall x\) hay \({x^2} - 6x + 10 \ge 1\forall x\)
\( \Rightarrow \frac{5}{{{x^2} - 6x + 10}} \le \frac{5}{1} = 5 \Leftrightarrow A \le 5\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {x - 3} \right)^2} = 0 \Leftrightarrow x = 3\)
Vậy với \(x = 3\) thì \(A\) đạt giá trị lớn nhất là 5.
Đáp án : A