Đề bài
Tìm hàm số bậc nhất có đồ thị là đường thẳng song song với đường thẳng \(y = 3x + 1\) và đi qua điểm \(\left( {1;7} \right)\)?
-
A.
\(y = - 4 - 3x\)
-
B.
\(y = 4 - 3x\)
-
C.
\(y = 3x + 4\)
-
D.
\(y = 3x - 4\)
Phương pháp giải
Sử dụng nhận biết về hai đường thẳng song song: Hai đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) và \(y' = a'x + b'\left( {a' \ne 0} \right)\) song song với nhau khi \(a = a',b \ne b'\) và ngược lại
Hàm số cần tìm có dạng \(y = 3x + b\left( {b \ne 1} \right)\)
Vì đường thẳng cần tìm đi qua điểm (1;7) nên ta có: \(7 = 3.1 + b,\) tìm được \(b = 4\) (thỏa mãn)
Vậy hàm số cần tìm là \(y = 3x + 4\)
Đáp án : C