Đề bài
Tìm khẳng định sai:
-
A.
Nếu $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\Delta ABC\backsim \Delta {A}'{B}'{C}'$.
-
B.
Nếu $\Delta {A}''{B}''{C}''\backsim \Delta {A}'{B}'{C}'$ và $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\widehat{A}=\widehat{A'},\widehat{B}=\widehat{B'},\widehat{C}=\widehat{C''}$.
-
C.
Nếu $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì chu vi tam giác $\text{ABC}$ bằng nửa chu vi tam giác ${A}'{B}'{C}'$.
-
D.
Nếu $\Delta ABC\backsim \Delta {A}'{B}'{C}'$ thì $\frac{AB}{{A}'{B}'}=\frac{BC}{{B}'{C}'}=\frac{CA}{{C}'{A}'}$.
Phương pháp giải
Dựa vào tính chất của tam giác đồng dạng.
Dựa vào tính chất của tam giác đồng dạng ta có:
- Nếu $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\Delta ABC\backsim \Delta {A}'{B}'{C}'$.
- Nếu $\Delta {A}''{B}''{C}''\backsim \Delta {A}'{B}'{C}'$ và $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\widehat{A}=\widehat{A'},\widehat{B}=\widehat{B'},\widehat{C}=\widehat{C''}$.
- Nếu $\Delta ABC\backsim \Delta {A}'{B}'{C}'$ thì $\frac{AB}{{A}'{B}'}=\frac{BC}{{B}'{C}'}=\frac{CA}{{C}'{A}'}$.
Đáp án C.
Đáp án : C