Tìm khẳng định sai — Không quảng cáo

Tìm khẳng định sai


Đề bài

Tìm khẳng định sai:

  • A.
    Nếu $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\Delta ABC\backsim \Delta {A}'{B}'{C}'$.
  • B.
    Nếu $\Delta {A}''{B}''{C}''\backsim \Delta {A}'{B}'{C}'$ và $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\widehat{A}=\widehat{A'},\widehat{B}=\widehat{B'},\widehat{C}=\widehat{C''}$.
  • C.
    Nếu $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì chu vi tam giác $\text{ABC}$ bằng nửa chu vi tam giác ${A}'{B}'{C}'$.
  • D.
    Nếu $\Delta ABC\backsim \Delta {A}'{B}'{C}'$ thì $\frac{AB}{{A}'{B}'}=\frac{BC}{{B}'{C}'}=\frac{CA}{{C}'{A}'}$.
Phương pháp giải

Dựa vào tính chất của tam giác đồng dạng.

Dựa vào tính chất của tam giác đồng dạng ta có:

  • Nếu $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\Delta ABC\backsim \Delta {A}'{B}'{C}'$.
  • Nếu $\Delta {A}''{B}''{C}''\backsim \Delta {A}'{B}'{C}'$ và $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì $\widehat{A}=\widehat{A'},\widehat{B}=\widehat{B'},\widehat{C}=\widehat{C''}$.
  • Nếu $\Delta ABC\backsim \Delta {A}'{B}'{C}'$ thì $\frac{AB}{{A}'{B}'}=\frac{BC}{{B}'{C}'}=\frac{CA}{{C}'{A}'}$.
Mặt khác, $\Delta {A}'{B}'{C}'\backsim \Delta ABC$ thì chu vi tam giác \(ABC\) bằng nửa chu vi tam giác \(A'B'C'\) là khẳng định không có căn cứ.

Đáp án C.

Đáp án : C