Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)
-
A.
\(\frac{{ - 3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
-
B.
\(\frac{{3{x^2} - 9}}{{2\left( {3x + 5} \right)}}\)
-
C.
\(\frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
-
D.
\(\frac{{3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\)
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
\(\begin{array}{l}\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\\ \Rightarrow A = \frac{{x + 2}}{{3x + 5}} - \frac{{x - 1}}{2} = \frac{{\left( {x + 2} \right)2}}{{2\left( {3x + 5} \right)}} - \frac{{\left( {x - 1} \right)\left( {3x + 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{2x + 4}}{{2\left( {3x + 5} \right)}} - \frac{{3{x^2} - 3x + 5x - 5}}{{2\left( {3x + 5} \right)}} = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} - 3x + 5x - 5} \right)}}{{2\left( {3x + 5} \right)}}\\ = \frac{{\left( {2x + 4} \right) - \left( {3{x^2} + 2x - 5} \right)}}{{2\left( {3x + 5} \right)}} = \frac{{2x + 4 - 3{x^2} - 2x + 5}}{{2\left( {3x + 5} \right)}} = \frac{{ - 3{x^2} + 9}}{{2\left( {3x + 5} \right)}}\end{array}\)
Đáp án : C