Tìm số hữu tỉ x biết rằng x/y^2 = 2 và x/y = 16 y khác — Không quảng cáo

Tìm số hữu tỉ x biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\) \(\left( {y \ne 0} \right) \)


Đề bài

Tìm số hữu tỉ x biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\) \(\left( {y \ne 0} \right).\)

  • A.

    \(x = 16\)

  • B.

    \(x = 128\)

  • C.

    \(x = 8\)

  • D.

    \(x = 256\)

Phương pháp giải

Từ giả thiết biến đổi để tìm được \(y\), từ đó thay \(y\) vào \(\dfrac{x}{y} = 16\) để tìm \(x\)

Ta có \(\dfrac{x}{{{y^2}}} = 2\) nên \(\dfrac{x}{y}.\dfrac{1}{y} = 2\), mà \(\dfrac{x}{y} = 16\). Do đó:

\( \Leftrightarrow \)\(16.\dfrac{1}{y} = 2\)

\( \Leftrightarrow \)\(\dfrac{1}{y} = \dfrac{1}{8}\)

\( \Leftrightarrow \)\(y = 8\)

Thay \(y = 8\) vào \(\dfrac{x}{y} = 16\) ta được: \(\dfrac{x}{8} = 16\) nên \(x = 16.8 = 128\).

Đáp án : B