Đề bài
Tìm số hữu tỉ x biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\) \(\left( {y \ne 0} \right).\)
-
A.
\(x = 16\)
-
B.
\(x = 128\)
-
C.
\(x = 8\)
-
D.
\(x = 256\)
Phương pháp giải
Từ giả thiết biến đổi để tìm được \(y\), từ đó thay \(y\) vào \(\dfrac{x}{y} = 16\) để tìm \(x\)
Ta có \(\dfrac{x}{{{y^2}}} = 2\) nên \(\dfrac{x}{y}.\dfrac{1}{y} = 2\), mà \(\dfrac{x}{y} = 16\). Do đó:
\( \Leftrightarrow \)\(16.\dfrac{1}{y} = 2\)
\( \Leftrightarrow \)\(\dfrac{1}{y} = \dfrac{1}{8}\)
\( \Leftrightarrow \)\(y = 8\)
Thay \(y = 8\) vào \(\dfrac{x}{y} = 16\) ta được: \(\dfrac{x}{8} = 16\) nên \(x = 16.8 = 128\).
Đáp án : B