Tìm số nghiệm nguyên của bất phương trình log 1/34x - 9 — Không quảng cáo

Tìm số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{3}}}\left( {4x - 9} \right) > {\log _{\frac{1}{3}}}\left( {x + 10} \right)\)


Đề bài

Tìm số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{3}}}\left( {4x - 9} \right) > {\log _{\frac{1}{3}}}\left( {x + 10} \right)\)

  • A.
    \(4\).
  • B.
    \(5\).
  • C.
    \(0\).
  • D.
    Vô số.
Phương pháp giải

\({\log _{\frac{1}{3}}}\left( {4x - 9} \right) > {\log _{\frac{1}{3}}}\left( {x + 10} \right) \Leftrightarrow 4x - 9 < x + 10\)

Chú ý về điều kiện xác định của bất phương trình logarit

\({\log _{\frac{1}{3}}}\left( {4x - 9} \right) > {\log _{\frac{1}{3}}}\left( {x + 10} \right)\)     Đk: \(x > \frac{9}{4}\)

\(\begin{array}{*{20}{l}}{ \Leftrightarrow 4x - 9 < x + 10}\\{ \Leftrightarrow 3x < 19}\\{ \Leftrightarrow x < \frac{{19}}{3}}\end{array}\)

Kết hợp với ĐK ta được \(\frac{9}{4} < x < \frac{{19}}{3}\)

Mà x nguyên nên \(x \in \left\{ {3,4,5,6} \right\}\)

Vậy có tất cả 4 nghiệm nguyên x của bất phương trình

Đáp án A.

Đáp án : A