Tìm tọa độ tiếp điểm của các tiếp tuyến \(\Delta \) với đồ thị của hàm số \(y = \frac{{x - 1}}{{x + 1}}\), biết tiếp tuyến đó song song với đường thẳng \(2x - y - 1 = 0\).
-
A.
\(\left( { - 2;3} \right)\)
-
B.
\(\left( {2; - 3} \right)\)
-
C.
\(\left( { - 2;3} \right)\) và \(\left( {0; - 1} \right)\)
-
D.
\(\left( {0; - 1} \right)\)
Hai đường thẳng song song khi chúng có hệ số góc bằng nhau. Giải phương trình tìm hoành độ tiếp điểm và suy ra tọa độ tiếp điểm.
ĐKXĐ: \(x \ne - 1\)
Ta có \(y = \frac{{x - 1}}{{x + 1}} \Rightarrow y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).
Vì tiếp tuyến cần tìm song song với đường thẳng \(2x - y - 1 = 0 \Leftrightarrow y = 2x - 1\). Khi đó ta có \(\frac{2}{{{{\left( {x + 1} \right)}^2}}} = 2 \Leftrightarrow {\left( {x + 1} \right)^2} = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 2}\end{array}} \right.\).
Với \(x = 0 \Rightarrow y = {\rm{ \;}} - 1\) \( \Rightarrow \) Phương trình tiếp tuyến là \(y = 2\left( {x - 0} \right) - 1 = 2x - 1\) (loại)
Với \(x = {\rm{ \;}} - 2 \Rightarrow y = 3\) \( \Rightarrow \) Phương trình tiếp tuyến là \(y = 2\left( {x + 2} \right) + 3 = 2x + 7\) (thỏa mãn) \( \Rightarrow \) Tọa độ tiếp điểm là \(\left( { - 2;3} \right)\).
Vậy tọa độ tiếp điểm cần tìm là \(\left( { - 2;3} \right)\).
Đáp án A.
Đáp án : A