Tìm x biết: 12/40 - 2x = 0,1 + [1,24]^0 — Không quảng cáo

Tìm x biết \(\dfrac{{12}}{{40}} - 2x = 0,(1) + {[1,(24)]^0}\)


Đề bài

Tìm x biết:

\(\dfrac{{12}}{{40}} - 2x = 0,(1) + {[1,(24)]^0}\)

  • A.

    \(\dfrac{{ - 73}}{{180}}\)

  • B.

    \(\begin{array}{l}\dfrac{{ - 73}}{{90}}\\\end{array}\)

  • C.

    0,4

  • D.

    -0,7

Phương pháp giải

Đưa các số thập phân về dạng phân số rồi tìm x

\(\begin{array}{l}\dfrac{{12}}{{40}} - 2x = 0,(1) + {[1,(24)]^0}\\ \Leftrightarrow \dfrac{3}{{10}} - 2x = \dfrac{1}{9} + 1\\ \Leftrightarrow \dfrac{3}{{10}} - 2x = \dfrac{{10}}{9}\\ \Leftrightarrow 2x = \dfrac{3}{{10}} - \dfrac{{10}}{9}\\ \Leftrightarrow 2x = \dfrac{{27}}{{90}} - \dfrac{{100}}{{90}}\\ \Leftrightarrow 2x = \dfrac{{ - 73}}{{90}}\\ \Leftrightarrow x = \dfrac{{ - 73}}{{90}}:2\\ \Leftrightarrow x = \dfrac{{ - 73}}{{90}}.\dfrac{1}{2}\\ \Leftrightarrow x = \dfrac{{ - 73}}{{180}}\end{array}\)

Đáp án : A