Tìm x, biết: A 6/7 - X = 12/28. B - 5/3 + 7/10x = 0,2. C 2x — Không quảng cáo

Tìm \(x\), biết a) \(\frac{6}{7} - X = \frac{{12}}{{28}} \) b) \(\frac{{ - 5}}{3} + \frac{7}{{10}}x = 0,2 \) c) \({\left( {2x + 6} \right)^2} = \frac{{81}}{{25}} \)


Đề bài

Tìm \(x\), biết:

a) \(\frac{6}{7} - x = \frac{{12}}{{28}}.\)

b) \(\frac{{ - 5}}{3} + \frac{7}{{10}}x = 0,2.\)

c) \({\left( {2x + 6} \right)^2} = \frac{{81}}{{25}}.\)

Phương pháp giải

a), b) Chuyển vế để tìm x.

c) Với \({A^2} = {B^2}\), ta chia hai trường hợp: TH1: A = B; TH2: A = - B.

a) \(\frac{6}{7} - x = \frac{{12}}{{28}}\)

\(x = \frac{6}{7} - \frac{{12}}{{28}}\)

\(x = \frac{{24}}{{28}} - \frac{{12}}{{28}}\)

\(x = \frac{{12}}{{28}} = \frac{3}{7}\)

Vậy \(x = \frac{3}{7}\)

b) \(\frac{{ - 5}}{3} + \frac{7}{{10}}x = 0,2\)

\(\frac{7}{{10}}x = \frac{1}{5} + \frac{5}{3}\)

\(\frac{7}{{10}}x = \frac{3}{{15}} + \frac{{25}}{{15}} = \frac{{28}}{{15}}\)

\(x = \frac{{28}}{{15}}:\frac{7}{{10}}\)

\(x = \frac{8}{3}\)

Vậy \(x = \frac{8}{3}\)

c) \({\left( {2x + 6} \right)^2} = \frac{{81}}{{25}}\)

\({\left( {2x + 6} \right)^2} = {\left( {\frac{9}{5}} \right)^2} = {\left( {\frac{{ - 9}}{5}} \right)^2}.\)

* TH1: \(2x + 6 = \frac{9}{5}\)

\(2x = \frac{9}{5} - 6\)

\(2x = \frac{{ - 21}}{5}\)

\(x = \frac{{ - 21}}{5}:2\)

\(x = \frac{{ - 21}}{{10}}.\)

* TH2: \(2x + 6 = \frac{{ - 9}}{5}\)

\(2x = \frac{{ - 9}}{5} - 6\)

\(2x = \frac{{ - 39}}{5}\)

\(x = \frac{{ - 39}}{5}:2\)

\(x = \frac{{ - 39}}{{10}}.\)

Vậy \(x \in \left\{ {\frac{{ - 39}}{{10}};\frac{{ - 21}}{{10}}} \right\}\).