Tìm x biết x - 6x + 6 - X + 3^2 = 9 — Không quảng cáo

Tìm \(x\) biết \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\)


Đề bài

Tìm \(x\) biết \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\)

  • A.
    \(x = 9\) .
  • B.
    \(x = 1\) .
  • C.
    \(x = - 9\) .
  • D.
    \(x = - 1\) .
Phương pháp giải

Áp dụng hai hằng đẳng thức:

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}; \\{A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

đưa về dạng tìm \(x\) đã biết (chú ý đằng trước ngoặc đơn có dấu trừ, khi phá ngoặc phải đổi dấu toàn bộ các hạng tử trong ngoặc).

Ta có

\(\begin{array}{l}\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9 \\{x^2} - {6^2} - \left( {{x^2} + 6x + 9} \right) = 9\\ {x^2} - 36 - {x^2} - 6x - 9 = 9\\ - 6x = 9 + 9 + 36 \\ - 6x = 54\\ x = - 9\end{array}\)

Đáp án : C