Tìm x thỏa mãn 3x + 15/x^2 - 4: X + 5/x - 2 = 1,x khác — Không quảng cáo

Tìm \(x\) thỏa mãn \(\frac{{3x + 15}}{{{x^2} - 4}} \frac{{x + 5}}{{x - 2}} = 1\,\left( {x \ne \pm 2 \,x \ne - 5} \right)\)


Đề bài

Tìm \(x\) thỏa mãn \(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = 1\,\left( {x \ne  \pm 2;\,x \ne  - 5} \right)\).

  • A.
    \(x = 0\)
  • B.
    \(x = 1\)
  • C.
    \(x =  - 1\)
  • D.
    \(x = 3\)
Phương pháp giải

Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\) ta nhân \(\frac{A}{B}\) với phân thức nghịch đảo của \(\frac{C}{D}\).

\(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = \frac{{3\left( {x + 5} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}:\frac{{x + 5}}{{x - 2}} = \frac{{3\left( {x + 5} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \cdot \frac{{x - 2}}{{x + 5}} = \frac{3}{{x + 2}}\)

\(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = 1 \Leftrightarrow \frac{3}{{x + 2}} = 1 \Leftrightarrow x + 2 = 3 \Leftrightarrow x = 3 - 2 \Leftrightarrow x = 1\) (t/m)

Đáp án : B