Tính giá trị của biểu thức A = x - 1x - 2x - 3 + x - 1x - 2 + x - 1 tại — Không quảng cáo

Tính giá trị của biểu thức \(A = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + \left( {x - 1} \right)\left( {x - 2} \right) + x - 1\) tại \(x = 5\)


Đề bài

Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).

  • A.
    \(A = 20\;\).
  • B.
    \(A = {\rm{ 4}}0\;\).
  • C.
    \(A = {\rm{ 16}}\;\).
  • D.
    \(A = 28\).
Phương pháp giải
Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
Ta có:

\(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)

Tại x = 5, ta có:

\(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)

Đáp án : B