Tính giá trị của biểu thức \(A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\) tại \(x = 5\).
-
A.
\(A = 20\;\).
-
B.
\(A = {\rm{ 4}}0\;\).
-
C.
\(A = {\rm{ 16}}\;\).
-
D.
\(A = 28\).
\(\begin{array}{l}A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + x-1\\\begin{array}{*{20}{l}}{ \Leftrightarrow A = \left( {x-1} \right)\left( {x-2} \right)\left( {x-3} \right) + \left( {x-1} \right)\left( {x-2} \right) + \left( {x-1} \right)}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3} \right) + \left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-3 + 1} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)\left[ {\left( {x-2} \right)\left( {x-2} \right) + 1} \right]}\\{ \Leftrightarrow A = \left( {x-1} \right)[{{\left( {x-2} \right)}^2}\; + 1]}\end{array}\end{array}\)
Tại x = 5, ta có:
\(A = \left( {5-1} \right)[{\left( {5-2} \right)^2}\; + 1] = 4.({3^2}\; + 1) = 4.\left( {9 + 1} \right) = 4.10 = 40\)
Đáp án : B