Tính giá trị của biểu thức D = 15xy^2; + 18xy^3; + 16y^2 — Không quảng cáo

Tính giá trị của biểu thức D = \(\left( {15x{y^2}\ + {{ }}18x{y^3}\ + {{ }}16{y^2}} \right){{ }} {{ }}6{y^2}\ - {{ }}7{x^4}{y^3}\ {{ }}{x^4}y\) tại \(x = \frac{2}{3}{ ^{}}y =


Đề bài

Tính giá trị của biểu thức

D = \(\left( {15x{y^2}\; + {{ }}18x{y^3}\; + {{ }}16{y^2}} \right){{ }}:{{ }}6{y^2}\;-{{ }}7{x^4}{y^3}\;:{{ }}{x^4}y\) tại \(x = \frac{2}{3}{;^{}}y = 1\) là:

  • A.

    \(\frac{{28}}{3}\)

  • B.

    \(\frac{3}{2}\)

  • C.

    \(\frac{2}{3}\)

  • D.

    \( - \frac{2}{3}\)

Phương pháp giải

Thực hiện phép tính chia để rút gọn đa thức D. Sau đó thay các giá trị x, y vào đa thức đã rút gọn.

Ta có:

\(\begin{array}{l}D = \left( {15x{y^2} + 18x{y^3} + 16{y^2}} \right):6{y^2} - 7{x^4}{y^3}:{x^4}y\\D = 15x{y^2}:6{y^2} + 18x{y^3}:6{y^2} + 16{y^2}:6{y^2} - 7{x^4}{y^3}:{x^4}y\\D = \frac{5}{2}x + 3xy + \frac{8}{3} - 7{y^2}\end{array}\)

Tại \(x = \frac{2}{3}{;^{}}y = 1\) ta có:

\(D = \frac{5}{2}.\frac{2}{3} + 3.\frac{2}{3}.1 + \frac{8}{3} - {7.1^2} = \frac{5}{3} + 2 + \frac{8}{3} - 7 = \frac{{13}}{3} - 5 =  - \frac{2}{3}\)

Đáp án : D